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ABSTRACT

In this report, coherent detection on a pulsed radar is discussed from

a statistical* decision theory viewpoint. The Neyman Pearson test is

applied to two cases; first, where it is desired to detect targets moving

with one particular radial velocity, and second, where it is desired to

detect targets at all velocities equally well. In the first case it is shown

that, in a sense, an ideal integrator is achieved; i. e. , the results are

exactly the same as if all the power reflected from the target were re-

ceived in one pulse, rather than many. A mechanization for the second

case is given. The statistics for a suboptimum integrator which approxi-

mates the Neyman Pearson test in a simpler form are derived. The

performance of this integrator is compared with that for the ideal non-

coherent integrator.
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INTROiUCrlON

In order to improve target detection capabilities of pulsed radars for

target returns with small signal to noise ratios, a device which combines

the returns from several pulse transmissions is often used. This device,

known as the integrator, is generally of the noncoherent type, i. e.,, it

sums the radar returns after detection of the I. F. output, and makes no

use of phase information. The noncoherent integrator has been exhaus-

tively treated by Marcum(1) in his "Statistical Theory of Target Detection

by Pulsed Radar." The results of Marcum's paper imply that a detection

scheme which makes use of both amplitude and phase of the I. F. signal

returns should be able to provide increased signal detectability.

In this report, the Neyman Pearson detector, which uses all the avail-

able information in the amplitude and phase of the signal return is derived

and mechanized. The Neyman Pearson detector is optimum in the sense

that for a given false alarm probability, (the probability that noise is mis-

taken for a target), it gives the greatest probability of detection for a

target. For false alarm probabilities smaller than 10 , a simpler sub-

optimum coherent detector which gives nearly optimum performance is

developed. The characteristics of this coherent detector are examined

and compared with those for the noncoherent integrator treated by Marcum. 1)
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Chapter 2

STATISTICS OF THE RADAR RETURN

This report will be confined to a discussion of pulsed radars. A short

pulse of duration r is transmitted every T seconds. Typically, T/T may

be of the order of 10 3 . The returned R. F. echo from a target is usually

heterodyned down to some lower I. F. frequency. This I. F. signal has

both amplitude and phase information, although special processing may be

required to utilize the phase information.

A typical schematized transmitting and receiving system for a radar

whose transmitter signal is derived from a crystal oscillator and frequency

multiplier chain is shown in Fig. 1. The I. F. output has a fixed phase shift

from the reference oscillator of 02 + 03 + (Zd/K)Zir, where 02 and 63 are

fixed phase shifts inherent in the system, and -dA is the r'ound trip distance

to the target in wavelengths of the transmitted frequency. If the target is

stationary with respect to the radar, then the phase of the echo pulse does

not change from return to return. If the target has a radial component of

velocity with respect to the radar, then the change of phase of the echo

from pulse to pulse is A4 = Z(dd/dt)/k = 4 7 vT/ ; where v is the radial

velocity of the target with respect to the radar. Essentially, the frequency

returned is modified by the doppler frequency, fd = Zv/K , which is sampled

every T seconds, resulting in a phase change of A+ = 47rvT/k

Phase information may also be obtained on a radar that has a pulsed os-

cillator such as a magnetron for a transmitter, although more, and more

critical circuitry is required. A system designed to preserve phase infor-

mation is diagrammed in Fig. 2. The I. F. obtained after heterodyning the

returned echo with the STALO, (a highly stable local oscillator), has a

random phase term 6 r, in it, which appears because the transmitter fires

at a random phase from pulse to pulse. This random phase term, 0r, can

be removed however, by heterodyning the I. F. with an oscillator which is

locked in phase with the transmitter after each transmission. This type of

oscillator, called a COHO, (coherent oscillator), is widely used for M. T. I.

(moving target indication), applications. Extreme stability is required of

the STALO and COHO in this system to preserve the phase information.

-With the requisite stability, the same kind of output as in the crystal con-

trolled radar is obtained.
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The signal from the nth transmission of the radar is seen to be,

Vn(t) = AncoS(c t + 6 + n), (1)

where A is the amplitude of the signal return, w the I. F. center fre-n

quency, 6 a random initial phase dependent upon the exact round trip

distance of the target from the radar, and 4) a phase precession term de-

pendent on the radial velocity. If the radial velocity of the target is in

m. p. h., and the wavelength of the transmitted R. F. is in centimeters,

the phase shift from pulse to pulse is = (89V/X)27T. The phase shift

during the pulse due to the doppler frequency in the echo return is quite

small for most radars, and is neglected since it does not affect the results

which follow.

The signal is accompanied by a narrow band gaussian noise process,

whose spectrum is shaped by the band pass characteristics of the I. F.

amplifier through which it passes. A sample function of thid random

process may be represented( ) as,

V(t) = r(t) cos [wct + O(t)]i (2)

where r(t) is the envelope process, and O(t) is the phase process, both of

which vary slowly with respect to wc . Expanding

V(t) r(t) cos [W(t) + 0(t)]

- r(t) coo 0(t) cos W t - r(t) sin 0(t) sin w t
C c

= x(t) Cos wct - y(t) sin hct (3)

x and y are statistically independent gaussian random variables having a

joint distribution 2  2
x

p(x, y) e 2ir (4)
2wr

where 2 is the variance, or physically, is the noise power into a one ohm

resistor.

The noise has been shaped by an I. F. bandw'idth matched to the transmitte

pulse width T. Thus two samples of noise taken at intervals much greater

than T apart show little corellation. Since T is usually greater than 100r,

noise samples taken a transmission period apart are essentially independent.
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Thus the joint probability distribution for noise,' ft a *iven range, from N

transmission periods in - E (x n+y n/26 2)
P(XI 0X2f "* XNo Yl'f Y20 "''. P7N) r. 2 ) (5)

The signal from the nth transmission was seen to be

Vn(t) = A con (W t + 6 + n)

sA cos (k+ n cos t - A sin ( 6 + n*) sinw t

The x component is thus Ancos(6 + n ), and the y component of the signal

is Ansin(6 + nf). The probability distribution for signal plus noise is thus,

-( nx -A cosl6+ni)) 2 -(y -A sin(6+n4)) 2/2r 2

PSt.~xls~n n n n()
p (+Nxn yn|=• (6)

The probability density distribution for the return from N transmission

periods is

N- (x -A cos(6+nqs)) 2 +(y -A sin(6+n) 2 /war2

nul n n n n

Ps+N(Xl 2 " XN'y 1 'y 2 ... YN) (

(7)

It will be found convenient later to work with the envelope and phase dis-

tributions rather than with the x and y distributions.' The probability density

distribution for sine wave plus noise in terms of envelope and phase is well

known, and is given by Davenport and Root "Random Signals and Noise", (2)

and others.

(r r -n+A ny "Z - n A cos(e) -6 -n )/a'
PsNnn n n (8)

2wow,2
where r n Xn+yn and 8 = tan y/Xn nn n Yn-
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For noise alone, i. e. , An= 0,2 2

PN (r n 0 n) =..2. en (9)
2w'f

which is the well known Rayleigh distribution times 1/27r# the probability

distribution of phase. The joint distribution from N returns is thus for

signal plus noise

N NI 1

"Tr -Z r +A n ..?1/2 r nrA cos( -6-n i)

(2vw)N (10)

For noise a lone

'frn n~2 2T

PN (rlr,..r N Io l ' .ON )n1TN n.11
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Chapter 3

THE NEYMAN PEARSON TEST

A procedure is desired for making a decision as to whether or not a

target exists at a given range and azmuth. The decision must be based on

the observed data, (the x's and yn's or rn Is and n 's),. No apriori knowl-

edge of the number of targets in the area can be assumed, except that it

will be small as compared with the number of independent noise samples

taken. What is generally done in an automatic detection system, is to set

the noise threshold so as to obtain a false alarm rate, (rate of error in

calling noise spikes targets), of one or less per scan. Since there are

approximately T/+ independent noise samples per transmission, and often

thousands of transmissions per scan, we should consider probabilities that

an individual noise spike will be mistaken for a target of from 106 to 10

It is desired to find a test which will give the greatest probability of

detection for a given false alarm probability. The Neyman Pearson test

does exactly this. For a test between two hypotheses, H0 , (called the

null hypothesis), and H,, at a given level, (probability of mistaking H 0 for

Hl), it gives a test of maximum power, (probability of choosing H when it

is true). The Neyman Pearson test is made by forming the ratio of the

probability density distributions for H1 and H0 , p (y)/pO(y), called the

likelihood ratio. The value of the observed parameters are substituted in

this expression, and a number is obtained. If this number is greater than

some number predetermined by the desired false alarm probability, the

hypothesis HI is chosen.

In our case, the null hypothesis is that there is only noise, and

p0 = p N(r i . "'" , rN, l, " ON) The hypothesis H is that there is a

target present with an initial phase 6, and a phase precession . The

likelihood ratio is

p6  S+N{r ,Onn

where p'S+N is given by (10) and pN is given by (11). The test is then,

whether

N N

-SAn/Zr Z n An cos (0 n - 6 -n i)
p n i * n 1 I1

= e n e n K (Z
PN
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The above test has no practical significance however, since it is only a

test of a target with a particular phase 6, and a doppler velocity corre-

sponding to the precession angle 4i versus noise. Since we have no apriori

knowledge that a target will give a return with some particular value of 6,

and have no interest in detecting only targets with specific values of this

parameter, a more general test must be devised. What is primarily desired,

is a test of the composite hypothesis that the target can have any value of 6

and i , versus noise. The adaptation of a Neyman Pearson test for a com-

posite hypothesis versus a simple hypothesis is given in Appendix A. It is

shown there, that if we make the test,
2 2w

SO 0 P 6 , , S+N(rl, r 2 , ... rNo, e 2 ... N) p( 6)p( ) d d6 dt

p. rltrZ, rN, e1, e2 , N)()
in effect averaging over 6 and t that we will have the test of composite H1,
versus H0 , of the greatest power for a given level. p(6) and p(l') are the

probability density distributions for 6 and respectively.

The target return may have any phase with equal probability, since k is
very small compared to the target distance. Thus

p (6)=l/2 for 0< 6< 2ff (14)
= 0 otherwise.

Similarly, with most radars, the phase precession is greater than 27
with a radial velocity of less than 200 knots. Thus for aircraft we may say

that

p(i) = 1/2 for 0 < < 2w (15)

=0 otherwise.

The integral, 0 {w

SPS+N({rn O}p(6) d 6
may be readily evaluated.

2W

SO PS+N ((rn' en})P(6)d6 = (16)
N N rZ + A2  N
H r - n n 1w NA s nR r 27 ~ 2 2 I rZ _iAnrnCS -ntp-6)

n=1l n=1 1U- Cce,- n=1 n ncs@ d6
(Zwr) N  e

let en -i =n



the N N

AnrncoS(+n-)= Arnco +n cos 6+An r nsin nsin 6

n=l nr- l

N N

Zcoso6 An rn c n+sin 6 Anr nsin+n

nal nr-l

N )2 + N2

r Co (6 -a) ] Anrn coo + An n sin

n
z I l

(17)

but
2W

1 e coo (6 - d6 a = J 0 (iz) (18)

where is the modified Bessel function of the first kind and zero order,

and I is the Bessel function of the first kind and zero order. Thus,

2w

fP56 ,t s+N(Irno0nJ) p(6 ) d6 x P s+N (t rn Jn)

N

r n+A /2-rZ N n
n= e n= l A1 O O - i

0'"n n IZ n n

(Zirr 1131 (19)

This is the probability density distribution independent of the parameter

6, but dependent on .
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With this probability distribution, we may set up the test of a target

moving with given doppler velocity, or a stationary target, versus noise.

N
p~s+N 2Irn en) en.A(

PN(Irn '0 8nI 0 _0 nrnc°S(enn })+ rninnn

(20)

is the likelihood ratio, (pl(y)/p 0 (y)), we must compare with a number K.

T he factor N

nt l
e

is a multiplying factor dependent on the amplitude and diqtribution of the

signal we are trying to detect, and does not involve any of the observed

data(rn's, and 6n's). This factor may thus be incorporated into the number

K giving K'. The function 10 (l/r 2 R) is monotonically increasing with re-

spect to R, for R > 0. Thus Io(l/ R) is greater than K I if and only if R is

greater than some other number K". The test may then be simplified to

AJ( NAr cos (0nn) +( Anr Sin (0n-n) > K" (21)

n= 1 n=-1
When the observed 9 's and rn's are substituted in the above expression ano

n n

compared with number K" which is determined by the desired false alarm

probability, we have the Neyman Pearson test for a stationary target, or

target with a given doppler velocity, vs. noise. The rn'I of the I.F. proceds
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are obtained by linear envelope detection. The 0 'I can be obtained by

-phase comparison with the oscillator of Figs. 1 or 2 whose output is

d6S wet. The detection inequality may then be mechanized with a digital

d8thiutor or with an analog scheme using delay lines.

The performance of this test is easily evaluated. Since
N

I An rn co (9- nd)
n=l

and N

An rsn n

are linear operations on sine 0n and coo n we may operate on signal ahndn n
noise separately, and use superpon.ition to combine the. results. The signal

"from the nth return is Ancos(w ct + 6 + ntp). Without loss of generality, we

can take 6 equal to zero, since the test has been devised to give the same

-results for all 6. Then when we rotate back nJ-we find that the

r nsin(O n " n) component vanishes, and

N N

Anrn cos(en - n,) = A n

n=l n=1

In effect we are performing a rotation which adds up all the signils in phase,

each with a given weighting.

The noise is invariant under phase rotation, and for a noise process with

variance a- the process which results from multiplying the noise voltage by

A has a variance A 2 r 2 . The sum of N independent gaussian noise pro,
nn 2 2

cesses with variance A r is a gaussian noise process with variancen

N
n• A 2

S n

The test is then equivalent to comparing the envelope of a sine wave plus

noise, to a given threshold. (Taking the square root of the sum of the"

squares of the two orthogonal components is equivalent to envelope detection).

The signal power is IN )2

and the noise power is
N

2 An
n-1
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N 22 N
T~ie signal, to noise ratio is 1/2 2 An /o . But 1/2 E A 2

n=l n n= n

jis the total power received from the pulses modulated by the antenna beam-

shape as the antenna scans by the target. Since the statistics for signal and

noise are the same as for one return, we arrive at the identical result as if

all the returned power were concentrated into one pulse.

Although we have been discussing only a target return with signal ampli-

tude An, the signal return will more generally generally be C An, where C

is any multiplicative constant. The shape of the set of pulse returns is

constant, and is determined by the antenna pattern, and the rate at which

it scans by a target. The test for target amplitudes CA n is the same asthat

for An , and since K" is determined by the false alarm probability for noise

alone, this test is said to be a uniformly most powerful test with respect to

the amplitude of the signal return.

While the test described above has great theoretical importance, in that

it shows that the optimum detector for a target with a given radial velocity

gives the same results as if all the energy were concentrated in one pulse,

it is of much more practical interest to find the test which is best for all

radial velocities, rather than just one. To do this we must evaluate the

ratio Z

p S+N( {rn, en))p(4d (22)

N Z  PN({r en})N
N A(

= '~ l 2 r 1 1N N
n• 2-cr 1 (E" A (E Anrnein(Grn-n €  d

n=l n=l n n

Unfortunately, the integral involved is a difficult one to evaluate. Expan-

sion of I0 into a power series, and integrating term by term does not help

because the integrals of the higher order terms, (which are important),

become so complex as to be unmanageable. However, the Neyman Pearson

test may be mechanized in its integral form. The test will consist of

comparing

XI ( nE=l Anr cos(O -n4)) 2 + E Anr nsin(On -n 2 d J (23)

t s antn=1 K'

to some constant, K'.
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In its present form, the integral may be difficult to mechanize. However,

if we make the substitution,

n q =(N 4j - (N - n)%b) ,

a little trigonometric manipulation shows,

nZlA r cos ( - nn)) + (Z A r sin(8 nip))
n • n=l

N N
=V ( Anr Cos (8n + (N -n)) +(; AnrnSin(On + (N-n) )) (24)

n=1 n=1

for every 4 This last expression is more easily mechanized than the first.

Fig. 3 shows a theoretically possible mechanization of the expression

(23) by means of the identity (24). The I. F. output from the systems shown

in Figs. 1 or 2 is the input to this system, and is processed before detection.

Each of the N-1 delay lines has delay T, the pulse repetition period of the

radar. Thus the N signal returns from a target, multiplied by the weighting

factors An are simultaneously available at the input to the summer. Pre-

ceding the delay lines are voltage variable phase shifters, which are

programmed by means of a sawtooth voltage to synchronously change their

phase by 27 over a time equal or less than a pulse width r. Voltage

variable delay lines which might be used for this purpose are available.

The nth return goes through N-n phase shifters, and has an I. F. cosine

component of AnrnCos (0n + (N-n)4i), at the input to the summer. The

summer adds all the N I. F. inputs, so that the output I. F. of the summer

has an I. F. cosine component of
N

An r cos(O + (N-n)4),
N

and a sine component of Zl Ann sin ( n + (N -n)).

Linear envelope detection of the I. F. is equivalent to taking the square root of the

sum of the squares. Therefore the output voltage of the linear envelope detector

is
N N

)rcos (n(N-n))I+) A r sin(n+(N-n)4))n n n nn=l n=l



This is equal to 12

A r cos(0n-n + A r sin (8n-n )nnn n n n
n=l n1l

by Eq. (24). The envelope detector is followd by a zero memory nonlinear

transfer function, (which can be mechanized using diodes), I 0 (R()/ar ).

Finally there is a boxcar detector (a diode feeding a c apacitor), which
2integrates I0 (R(')/r ) over the cycle of 4 which is w, .and is "dumped", or

discharged,' at the end of each cycle by a trigger developed from the trailing

edge of the sawtooth. The output of the boxcar detector is then put through

a threshold circuit which passes as targets only those outputs of the boxcar

detector greater than K'.

It is thus seen that the system of Fig. 3 explicitly mechanizes the test

given by expression (23). This system could also be used to detect targets

of only a given doppler velocity by keeping the phase shifters fixed at the

proper phase, rather than sweeping them over 2w. The nonlinear processor,

10(RlZ ), and the boxcar detector are not really required in this case,

(although leaving them in will not affect performance), and the output of the

linear detector can be sent directly to the threshold circuit.

It must be emphasized that the circuit of Fig. 3 is only a theoretical

mechanization of the Neyman Pearson test, and practical difficulties such

as maintaining the delay of N delay lines identical to each other to within a

small fraction of 1/f , where fc is the I. F. carrier frequency, would

probably make construction of the detector by this scheme impossible. A

digital scheme using the r 's and 8 's directly may be feasible.
n n
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Chapter 4

PERFORMANCE OF A COHERENT INTEGRATOR

it is desired to evaluate the signal to noise ratio required for a given

probability of detection, Pd , with a given probability of false alarm, Pn

For purposes of simplicity, and so that we can compare the results for a

coherent integrator with those of Marcum' for the noncoherent integrator,

we shall assume that the signal return consists of N equal amplitude pulses.

Then
N N

A r cos(9 n - +( A r sin(=n)(2
- 1 nn n nn n

N 2 + N

A E rcos(e-n ) 2 + 1 rsin(On4- ni))l( n nIn

In processing this signal we would make all the A 's of Fig. 3 equal to

one, and change the nonlinear elern nt from 10 (R/r ) to 10 (A R/- 2), where

now the signal R is

R =/ I rncos(O -n))2 +(n-i rsin(n" i))2 (26)

It is seen that the test depends on the amplitude of the signal we are

trying to detect. If the test is set up for a particular value of A and cr2

in the nonlinear element 10 (AR/kr2), then the test will be most powerful

only for that A, and will be less sensitive for all other amplitudes of signal

return. Thus we do not have a uniformly most powerful test with respect

Lo A. What would be done in practice, would be to set up 10 (AR/r 2 ) for the

marginal signal, so as to get greatest sensitivity for it. Signals larger than

marginal are easily detected anyway.

It is instructive to investigate the value of I0 (AR/r ). If we are interested

in a probability of detection, P., of about . 50, with a false alarm probability,

P , of the order of 10 then NA 2/2- z 15. R p NA. Thus,n ." peak .
AR/ar2 Z:3 0 . For values of x greater than ten, I 0 (x) - eX/Nfl4 Z (7-) Thus

if AR/r2 were to change from 30 to 3 1, the output of the nonlinear device
would be multiplied by approximately e.. It is thus seen that

isdtemnd 2 
0, A~)d 2

is determined primarily by the peaks of AR(+)/" 2 since these are very heavily

weighted.



We should therefore expect that a device which detects the peaks of R(kp),

shouxld give a test nearly as powerful as that illustrated in Fig. 3 for

Pn io 6 and Pd >.50. Furthermore, this test is uniform, (although not

most powerful), with respect to A. This test is mentioned by Reed, Kelly,

and Root in "Detection of Radar Echoes in Noise",(3 although this perform-

ance of the test is not evaluated. It is this test which will be -investigated

here, rather than the test of Fig. 3, because the calculations for Pn and Pd

are much simpler.

We must first investigate the statistics of R(4). Let

N
X,() = n I r cos(On- n ) (27)

,' N

Y,= " r sin(O n) (28)
n1 n n

Then

R( ) = JX(4) 2 +y () 2  (29)
Let

No- 2 p0 (a) E E [X(q) X( + a)] (30)

wnere E denotes statistical average. For noise alone, E [X(q). X(4 + a) -1

E [X(0) . X(a)], because of stationarity.

Thus for noise alone

NaZ P0 (a) = E r cosO Z- r cos(O
but n= n n

but

E(r n coso n  r Mcos(O r-ma)) = 0
for n

N Z P0(a )  for1mE~rn

N N = N 2 cosOn cos(O -na))

n= n~ n n
2

E E(-.- [cos(0 -n a) + cos na)
n=1 n

2
E -E cos na) = 0*2 cos na
n= I n= I

r2  sin (N+) a sin 3a)

a ) (3 ib)
sin _
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Similarly, let

NT X0(a) E[X() Y( + a)] EX(0) y(a)] (32)

N E[r n2Cos n sin (On-na)]

n=

= [r n (sin[20 -na] sin na)]
2 ~ n

n=1I

N r2 N
= - 2 sin n) = -r E sinna

n=l n-l

cos (N+ )a- cos
T,.C :(33a)

Lsin a

2sin (N )sin N
2 2 (33b)

sino/

p0 (a) and k0(a) are normalized covariance functions for the bivariate

gaussian distribution, p0 (O) = 1 andX0.(0) = 0.

Let
i~o

p0 + J0= K0 e (34)

K 0 = 0 +X 0 = tan P0

c2 N+l 2 Na 2 N + 1 2 Na snNa
C oB -a sin - + sin 2 a sin 2 sin-K0 (a) t .- 2 a

sin Nsin- -

(35)

(a) tan (tan(N - - ) a) N +:Ia (36)

The notation p0 , X0 , K0 and +0 is after Middleton (4)

With these statistics for the noise, it is possible to calculate the prob-

ability that noise will exceed a given threshold is the interval from 0 to Zir.

Let us consider the average number of crossings with positive slope of

a given level R 0 , by the process R(t), during some long interval T. This

will tell us the average number of noise spikes n+ which exceed a given

threshold in T. The probability that R is between R 0 and R 0  dR, is

p(R 0 ) dR nt (37)
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S

where . is the average number of crossings of the level, (of both slopes), and

" is the average time required for a crossing. But

t dR (38)

The average value of At is given by,
-=dR 00 dR (9

Sv rp(3R9 0 )d

where p(R/R 0 ) is the probability density distribution for R given R R 0 .
Solving forii

-- Tp(R0 )dR T00R p(/ Ro dl°

n At T .IRI p(R 0 )P(i/R 0 )di = T p(4,R0)di
-00 W(40)

This is the total number of crossings with both positive and negative

slope. The number of crossings with positive slope isT00

T :- IR Ip(R , dR (41)
-00

which if p(R/R) is an even function, is~00

n, = T. 5R p(R, R 0 )di (42)

0
In our particular ease, R is Rayleigh distributed, and we are working

over an angle cI rather than t. It is shown in Appendix B and elsewhere ( 4 )

that, R'2
0 R2

R 0' e e -Zr2K0"(0)
p(R, R0 ) - e -Z-K "(0) (43)

Thus "R

c2  R
T Roe 20R e 20-K6'(0)

+ 0 z O dR

T O i/~(w r K((O)



1 7a

N+l a whand the phase is - 2 which are the same as the covariance functions,

k0 (a) and.p 0 (a), for the noise. The amplitude ata = 0 is NA = A'. The

probability distribution for signal plus noise at a = 0 is the familiar prob-

ability density distribution for the envelope of sine wave in gaus(iannoise2), (4)

R2 +A' 2 A R '

p(R) .e , 2N " N ,.2  (49)
No 2

But since we have taken the noise power N a- 2 = 1,

R 2 +A'
2

2

p(R) = Re I0 (A'R) (50)

The peak of the signal, however, will not necessarily coincide with the

peak of signal plus noise, although the the two should be very close, since

A' is of the order of five. We shall calculate the small increase in R peak

due to the fact that the slope of R may not be zero at a = 0.

The signal is in Na
A' 2 (51)

N asin a-

This has a main peak ata = 0, (or Zn), of A', and many much smaller peaks

at which there is a very small probability that signal plus noise will exceed

the threshold R0 . Thus, we will consider signal plus noise only in the vicinity

of the main peak. For small a we can approximate the signal by

Na
sin 

(2

S ~A' (52)-A Na
"--

Expanding into series this is

(Na) Na 4 1
S A' 1  T + lZO (53)

and

d a
ds A' (N)N + (54)Nd _'" - " .+ 6 (54)
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In our particular case we are interested in the probability of noise cross-

ing the threshold over an interval of 4, of Zw. The probability that noise

will cross twice in the interval can be ignored, since we are interested in
-6

thresholds high enough that P = 10 . For our process the variance is N 22 
n

not r The expreesion for K0 (a) is given in (35). If this is differentiatd

twice and s set to zero we get

K0 (0) - N21 (45)
12

Thus, our formula for P nis N2 2

n NoZ 0-

Nw 1R 0

No 
R e R- (46)

Nw 0 42No 2

For ease of calculation, the noise power out of the summer shall be taken

as one, i. e., Nw = 1. Then 2

n 6 (47)

For a specific N and Pn, R 0 can be solved for.

With the bias level now determined, it is desired to find the signal strength

required to give a certain probability of detection, Pd" The signal from the
return is A cos ct + 6 + n +). Again we may assume 6 = 0 without loss

of generality. At the output of the summer, the signal has an x component

of N
A cos n (*-4b)

n-1
and a y component of

N

-A Zsin n (+-q)
n & l

Lot (e t ;. Than the envelope of the signal is

A -si (48)
sin a
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We will use an approximation for-S which uses only the first two terms

of the expansion, thus approximating

Nasin

A#
Nsin

in the region of small Na/Z by a parabola. (This will give an estimate for

R, the average increase in the peak, smaller than it actually is). (See

Fig. 4).

[iN2-a ds ANa (55)
.A! 1 .- - (55)

If the signal plus noise has a slope of R at a - Othe peak of signal plus

noise will occur at the point where

ds AN a
R - da = l (56)

if Na is small. The amplitude of the peak above the amplitude at a = 0 is

22 2 2 2[ A'N-J a A'N a Ala N
A R = a Ty " q-4 Z4 (57)

substituting for a from (56)

A'aN 2  A'N2  1 1ZR 6 R
A R 2 J (58)

A N AIN (8

The probability distribution for the slope of signal plus noise when the

signal is constant, (ds/da = 0), and the phase modulation of the signal is the

same as that for noise, is givenin Middleton ( 4 ) as

-.R2 /.2NaK" (0)
p(R/R O}  e

' /-0 iTNo-2 K" (0) (59)

which is independent of signal amplitude.

E(AR)= = (NZ-I) for N> 0 (60)
A'N 12 ZA'
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We have assumed Na 2 = 1 and have solved for K0 "(0) = -(N1-1(/lZ

6 - for N> 1O (61)
A'N & &d

The means of computing A' with a given Pd is then as follows. The

probability of detection with a given signal A' is
ooR 2 +A' 2

00 + A

Pd= Re 2 10(A'R)d R (62)

This integral is tabulated in Marcum( I ) as the Incomplete T-oronto Func-

tion.

00 AR 2 +A' I0 (A'R)d R
- T- (1,0, A =-, Re 2 (63)

1

For a given value of Pd and R0 ,A can then be found. I/N(A"- -,)is the

amplitude of the signal to the integrator that is required to give the desired

probability of detection. Figs. 5 and 6 show a comparison between the

integration loss for the coherent detector just discussed, and the ideal non-
coherent detector discussed by Marcum ( I ) . The integration loss is defined
as the ratio in d. b. of the total input signal power for a given Pd and P no

to the total power that would be required in one pulse for the same P and

P n. The integrator derived when the doppler velocity of the target was
known, had zero d. b. integration loss for all values of N, Pd and P
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Chapter 5

CONCLUSIONS

The results plotted on the graphs of Fig. 5 and 6 show the superiority of

coherent over noncoherent integration. When the number of pulses integra-

ted is greater than 30, the improvement is significant. At 100 pulses

integrated, it is about 3.5 d.b. Thus, a transmitter of one half the power

would give slightly better performance with a coherent integrator, than a

full power transmitter would give with a noncoherent integrator, when the

antenna beamwidth contains 100 target returns. Since transmitter power is

expensive, use of coherent integration on such a system might be economically

feasible.

It should be noted that the coherent integrator performs better when

10"rather than 10 . This is probabily because at P n= 10 , the

threshold is higher, and the integrator more closely approximates the

Neyman Pearson test. That is,
Zn
0I0 ( A-- )dq,S0  TZo

2is more dependent on the peaks for larger values of AR()4/ .
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Appendix A

NEYMAN PEARSON TEST FOR COMPOSITE
HYPOTHESIS vs SIMPLE HYPOTHESIS

Let y = {y yl , .. } y be point in n-space representing set of ob-

served parameters. p0 (y): prob. d.d. of simple hypothesis H0

Pl (y): prob. d.d. of composite hypothesis H I as function of

parameters a,, a 2 , ... aM

Then
ODODO OD

Pi ty )  "" (Y) p(ai)p(a 2 ) ... Pam)dl" darn
-0 -00 -00 a1, am

is prob. d.d. of hypothesis H1 .

Y is the space of observations

Y is the set of y's such that H0 is chosen

Y1 is set of y's such that HI is chosen

Y = Y0 UY 1  YO fl Y1 =O
P isYt)is

Po(Y ilevel of test (prob. of accepting H1 when it is false)

P°(Yl p0 (y)dy.
0 1

P(Yl) is power of test (prob. of accepting H1 when it is true)

PI(I PI (y) dy p(al)p(a.) ... p(%r)d ai d a,. darn
DC -00 -00 1 * ' !

P1 (Y1 ) = pl(y)dy
1

Choose Y1 so that in Yls p1(y)/p 0(y) > - .
In YO, Pl(Y) /Po ( y ) < 11

Let a = P 0 (Y1 ) be level of test.

Let T1 be set of y's such that Po(TI) < a
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Then it can be shown that PI(Yl) *- P1(T1 ); 1. e. , the likelihood ratio
method of choosing Y, gives a test of maximum power for a given level.

Proof: Let A =T I fY 1

P, (Y I-A) = - p (Y) d y 2I - po(y)dy = ij PO(Y 1 -A)

because (Y -A)c Y I

P0 (Yl -A) =P 0 (YI) -P 0 (A) = a- P0 (A)

** I(YI) P1 (Yl -A) + P1 (A) >I n - il P0 (A) + PI(A)

P1 (T 1 -A) =6 ~T-A Pl(y)dy<j ST -APO~ydy= ?I P0 (T 1 A).

because TI- AcY 0

Po(T A) =P 0 (TjJ - P0 (A) < a- P0 (A)

=,Tl P1(Tl - A) + P1 (A) < n a - -n P0 (A) + P1(A)

2.PI(Yl) > P(Tj)
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Appendix B

PROBABILITY DENSITY DISTRIBUTION FOR ENVELOPE
AND SLOPE OF ENVELOPE OF GAUSSIAN PROCESS

The slope of a sample function of a process is given by

Rz - R1

A t --0 Ar

where R, and R. are the values of the sample function at times A t apart.

The probability density distribution for R given R 1 is then
R2 -R 1

P(R/R I ) - lim P( R Z-
A T'-. A

The joint p. d.d. for R 1 and R2 is well known(2)'(4)for Rayleigh Process,

and isR 2 2P
RI~~z -Z Z(IK()I K ( ) R ~

P ( R 1 , R 2 ) = . 2 ( e 0. 1 .K0 [ (
T R

For small T we can expand K 0 (T) into a MacLauren series

K 0 (T) = K0 (0) + N (0) T + --K0 (O)T +

But K0 (O) = I and since K 0 (T) is a maximum at zero, Kb(0) 0

1 " 2Z
K0(T) - 1+ -- K0 (0)T for small T

K 2(T) I + K 0' (0) T for small T

Thus for small T R +R

RIRz 2- K0 (0)T Z 0 R
p(RleRz) = Of " e 0 1 0 (T-'K 0 (O)T

x

But 10 x) e for large x.

(RZ-Rl)2 RIR2

P(R1,R Z) R =" 
- o()
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As T-0 R must approach R2 so we. may saySz (R'1)

R 2 2 2
R- e 0Z 'c()P(R 1, R 2) e T e-~ 2o o_____ o_________

By a simple transformation 2 2
R

R2 -R i  R e 20 e -20 K(0)
P(RI' T T-.O = p(RI R) 2 (° /-2w, 4r. K (0)
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GLOSSARY OF PRINCIPAL SYMBOLS USED IN
BULK OF REPORT

A,A' = amplitudes of I.F. signals
th

A = amplitude of I. F. from n return
n
a an angle (*-4)

C = a constant

d = distance of target from radar

E(x) = statistical average of x, sometimes written"x

f c = center frequency of I. F.

6 = constant phase angle

H0 , H I  * null and alternate hypotheses

10 = modified Bessel function of first kin and zero order

K, KI, Kit = constants, numbers

KO u j p0 X0 2 =normalized covariance function

x = wavelength of transmitted R. F.

-0(a) = E(X(44.Y(4+a) ) =normalized covariance functiort

N = number of pulse returns from a target

n = integer; number of threshold crossings

n += number of positive threshold crossings

Wf= radian frequency

W c= Zif = radian frequency of center of I. F.

Pn = probability of false alarm

P d = probability of detection

p(x) = probability density distribution of x

pN (r n ) =p.d.d. of sequence of r ns and 0 's due to noise

PSfN ( Jr., 0 n ) p.d.d. of sequence of r ' s and 0 n s due to signal
plus noise n n

p S,6S+N( ),p S+N)= p.d.d. dependent on , and 6, and4s respectively
+0 ffi tan - 1 XO =angular correlation function

* = an ange

. = precision angle of I. F. returns

R(4) envelope amplitude = rX () (y2)

R 0 = threshold level

r n observed amplitude of I. F. from n return
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pO(a) = E(X( ) X(q+a)) normalized covariance functionNo-

S = signal
20r = variance, or power of I.F. noise

T = interpulse period; period of time

T= pulse length; time interval

t = time
th

a = observed phase of I.F. from n return
n

V(t) = voltage of process

V = radial velocity of target

x(t) = cosine component of I.F. gaussian noise

N

X1= rn con (0n - nP)
n-l

y(t) sine component of I. F. gaussian noise

N
Y(M I r r n sin ( n - n )

nl
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